
ARM Virtualization: Performance and Architectural
Implications

Christoffer Dall, Shih-Wei Li, Jin Tack Lim, Jason Nieh
Department of Computer Science

Columbia University

New York, NY, United States

cdall,shihwei,jintack,nieh@cs.columbia.edu

ABSTRACT

ARM servers are becoming increasingly common, making server

technologies such as virtualization for ARM of growing importance.

We present the first study of ARM virtualization performance on

server hardware, including multi-core measurements of two popular

ARM and x86 hypervisors, KVM and Xen. We show how ARM

hardware support for virtualization can enable much faster transi-

tions between VMs and the hypervisor, a key hypervisor operation.

However, current hypervisor designs, including both Type 1 hypervi-

sors such as Xen and Type 2 hypervisors such as KVM, are not able

to leverage this performance benefit for real application workloads

on ARMv8.0. We discuss the reasons why and show that other fac-

tors related to hypervisor software design and implementation have

a larger role in overall performance. Based on our measurements, we

discuss software changes and new hardware features, the Virtualiza-

tion Host Extensions (VHE), added in ARMv8.1 that bridge the gap

and bring ARM’s faster VM-to-hypervisor transition mechanism to

modern Type 2 hypervisors running real applications.

1 INTRODUCTION

ARM CPUs have become the platform of choice across mobile and

embedded systems, leveraging their benefits in customizability and

power efficiency in these markets. The release of the 64-bit ARM

architecture, ARMv8 [9], with its improved computing capabilities

is spurring an upward push of ARM CPUs into traditional server sys-

tems. A growing number of companies are deploying commercially

available ARM servers to meet their computing infrastructure needs.

As virtualization plays an important role for servers, ARMv8 pro-

vides hardware virtualization support. Major virtualization players,

including KVM [22] and Xen [3], leverage ARM hardware virtual-

ization extensions to support unmodified existing operating systems

(OSes) and applications with improved hypervisor performance.

Despite these trends and the importance of ARM virtualization,

little is known in practice regarding how well virtualized systems

perform using ARM. There are still only few studies of ARM vir-

tualization performance on server hardware. Although KVM and

Xen both have ARM and x86 virtualization solutions, there are

substantial differences between their ARM and x86 approaches be-

cause of key architectural differences between the underlying ARM

and x86 hardware virtualization mechanisms. It is unclear whether

these differences have a material impact, positive or negative, on

performance. The lack of clear performance data limits the ability

This work is based on an earlier work: ARM Virtualization: Performance and Ar-

chitectural Implications, in the 43rd Annual International Symposium on Computer

Architecture, ISCA, (18-22 June) ACM 2016 http://dx.doi.org/10.1109/ISCA.2016.35

of hardware and software architects to build efficient ARM virtu-

alization solutions, and limits the ability of companies to evaluate

how best to deploy ARM virtualization solutions to meet their in-

frastructure needs. The increasing demand for ARM-based solutions

and growing investments in ARM server infrastructure makes this

problem one of key importance.

We present the first in-depth study of virtualization performance

on multi-core ARMv8.0 server hardware. We measure the perfor-

mance of two popular ARM hypervisors, KVM and Xen, and com-

pare them with their respective x86 counterparts. These hypervisors

are important and useful to compare on ARM given their popularity

and their different design choices. Xen is a standalone bare-metal

hypervisor, commonly referred to as a Type 1 hypervisor. KVM is

a hosted hypervisor integrated within an existing OS kernel, com-

monly referred to as a Type 2 hypervisor.

We have designed and run a number of microbenchmarks to ana-

lyze the performance of frequent low-level hypervisor operations,

and we use these results to highlight differences in performance be-

tween Type 1 and Type 2 hypervisors on ARM. A key characteristic

of hypervisor performance is the cost of transitioning from a virtual

machine (VM) to the hypervisor, for example to process interrupts,

allocate memory to the VM, or perform I/O. We show that Type 1

hypervisors, such as Xen, can transition between the VM and the

hypervisor much faster than Type 2 hypervisors, such as KVM, on

ARM. We show that ARM can enable significantly faster transitions

between the VM and a Type 1 hypervisor compared to x86. On the

other hand, Type 2 hypervisors such as KVM, incur much higher

overhead on ARMv8.0 for VM-to-hypervisor transitions compared

to x86. We also show that for some more complicated hypervisor

operations, such as switching between VMs, Type 1 and Type 2

hypervisors perform equally fast on ARM.

Despite the performance benefit in VM transitions that ARM can

provide, we show that current hypervisor designs, including both

KVM and Xen on ARM, result in real application performance that

cannot be easily correlated with the low-level virtualization opera-

tion performance. In fact, for many workloads, we show that KVM

ARM, a Type 2 hypervisor, can meet or exceed the performance

of Xen ARM, a Type 1 hypervisor, despite the faster transitions

between the VM and hypervisor using Type 1 hypervisor designs

on ARM. We show how other factors related to hypervisor software

design and implementation play a larger role in overall performance.

These factors include the hypervisor’s virtual I/O model, the abil-

ity to efficiently transfer data between the VM and the hypervisor,

and interrupt processing overhead. Although ARM hardware vir-

tualization support incurs higher overhead on VM-to-hypervisor

transitions for Type 2 hypervisors than x86, we show that both types









all other I/O handling to Dom0, when a Xen VM performs I/O, it

involves trapping to the hypervisor, signaling Dom0, scheduling

Dom0, and handling the I/O request in Dom0.

3 EXPERIMENTAL DESIGN

To evaluate the performance of ARM virtualization, we ran both mi-

crobenchmarks and real application workloads on the most popular

hypervisors on ARM server hardware. Unfortunately, hardware with

VHE support was not available at the time of our measurements.

As a baseline for comparison, we also conducted the same experi-

ments with corresponding x86 hypervisors and server hardware. We

leveraged the CloudLab [5] infrastructure for both ARM and x86

hardware.

ARM measurements were done using HP Moonshot m400 servers,

each with a 64-bit ARMv8-A 2.4 GHz Applied Micro Atlas SoC

with 8 physical CPU cores. Each m400 node had 64 GB of RAM,

a 120 GB SATA3 SSD for storage, and a Dual-port Mellanox

ConnectX-3 10 GbE NIC. x86 measurements were done using Dell

PowerEdge r320 servers, each with a 64-bit Xeon 2.1 GHz ES-2450

with 8 physical CPU cores. Hyperthreading was disabled on the

r320 nodes to provide a similar hardware configuration to the ARM

servers. Each r320 node had 16 GB of RAM, a 4x500 GB 7200 RPM

SATA RAID5 HD for storage, and a Dual-port Mellanox MX354A

10 GbE NIC. All servers are connected via 10 GbE, and the intercon-

necting network switch [27] easily handles multiple sets of nodes

communicating with full 10 Gb bandwidth such that experiments

involving networking between two nodes can be considered isolated

and unaffected by other traffic in the system. Using 10 Gb Ethernet

was important, as many benchmarks were unaffected by virtualiza-

tion when run over 1 Gb Ethernet, because the network itself became

the bottleneck.

To provide comparable measurements, we kept the software envi-

ronments across all hardware platforms and all hypervisors the same

as much as possible. We used the most recent stable versions avail-

able at the time of our experiments of the most popular hypervisors

on ARM and their counterparts on x86: KVM in Linux 4.0-rc4 with

QEMU 2.2.0, and Xen 4.5.0. KVM was configured with its standard

VHOST networking feature, allowing data handling to occur in the

kernel instead of userspace, and with cache=none for its block

storage devices. Xen was configured with its in-kernel block and

network backend drivers to provide best performance and reflect

the most commonly used I/O configuration for Xen deployments.

Xen x86 was configured to use HVM domains, except for Dom0

which was only supported as a PV instance. All hosts and VMs

used Ubuntu 14.04 with the same Linux 4.0-rc4 kernel and software

configuration for all machines. A few patches were applied to sup-

port the various hardware configurations, such as adding support for

the APM X-Gene PCI bus for the HP m400 servers. All VMs used

paravirtualized I/O, typical of cloud infrastructure deployments such

as Amazon EC2, instead of device passthrough, due to the absence

of an IOMMU in our test environment.

We ran benchmarks both natively on the hosts and in VMs. Each

physical or virtual machine instance used for running benchmarks

was configured as a 4-way SMP with 12 GB of RAM to provide a

common basis for comparison. This involved three configurations:

(1) running natively on Linux capped at 4 cores and 12 GB RAM,

(2) running in a VM using KVM with 8 cores and 16 GB RAM with

the VM capped at 4 virtual CPUs (VCPUs) and 12 GB RAM, and

(3) running in a VM using Xen with Dom0, the privileged domain

used by Xen with direct hardware access, capped at 4 VCPUs and

4 GB RAM and the VM capped at 4 VCPUs and 12 GB RAM.

Because KVM configures the total hardware available while Xen

configures the hardware dedicated to Dom0, the configuration pa-

rameters are different but the effect is the same, which is to leave the

hypervisor with 4 cores and 4 GB RAM to use outside of what is

used by the VM. We use and measure multi-core configurations to

reflect real-world server deployments. The memory limit was used

to ensure a fair comparison across all hardware configurations given

the RAM available on the x86 servers and the need to also provide

RAM for use by the hypervisor when running VMs. For benchmarks

that involve clients interfacing with the server, the clients were run

natively on Linux and configured to use the full hardware available.

To improve precision of our measurements and for our experimen-

tal setup to mimic recommended configuration best practices [4], we

pinned each VCPU to a specific physical CPU (PCPU) and generally

ensured that no other work was scheduled on that PCPU. In KVM,

all of the host’s device interrupts and processes were assigned to run

on a specific set of PCPUs and each VCPU was pinned to a dedicated

PCPU from a separate set of PCPUs. In Xen, we configured Dom0

to run on a set of PCPUs and DomU to run a separate set of PCPUs.

We further pinned each VCPU of both Dom0 and DomU to its own

PCPU.

4 MICROBENCHMARK RESULTS

We designed and ran a number of microbenchmarks to quantify im-

portant low-level interactions between the hypervisor and the ARM

hardware support for virtualization. A primary performance cost

in running in a VM is how much time must be spent outside the

VM, which is time not spent running the workload in the VM and

therefore is virtualization overhead compared to native execution.

Therefore, our microbenchmarks are designed to measure time spent

handling a trap from the VM to the hypervisor, including time spent

on transitioning between the VM and the hypervisor, time spent pro-

cessing interrupts, time spent switching between VMs, and latency

added to I/O.

We designed a custom Linux kernel driver, which ran in the

VM under KVM and Xen, on ARM and x86, and executed the mi-

crobenchmarks in the same way across all platforms. Measurements

were obtained using cycle counters and ARM hardware timer coun-

ters to ensure consistency across multiple CPUs. Instruction barriers

were used before and after taking timestamps to avoid out-of-order

execution or pipelining from skewing our measurements.

Because these measurements were at the level of a few hundred

to a few thousand cycles, it was important to minimize measurement

variability, especially in the context of measuring performance on

multi-core systems. Variations caused by interrupts and scheduling

can skew measurements by thousands of cycles. To address this, we

pinned and isolated VCPUs as described in Section 3, and also ran

these measurements from within VMs pinned to specific VCPUs,

assigning all virtual interrupts to other VCPUs.

Using this framework, we ran seven microbenchmarks that mea-

sure various low-level aspects of hypervisor performance, as listed in





Name Description

Hypercall Transition from VM to hypervisor and return to VM

without doing any work in the hypervisor. Measures

bidirectional base transition cost of hypervisor opera-

tions.

Interrupt Controller

Trap

Trap from VM to emulated interrupt controller then

return to VM. Measures a frequent operation for many

device drivers and baseline for accessing I/O devices

emulated in the hypervisor.

Virtual IPI Issue a virtual IPI from a VCPU to another VCPU

running on a different PCPU, both PCPUs executing

VM code. Measures time between sending the virtual

IPI until the receiving VCPU handles it, a frequent

operation in multi-core OSes.

Virtual IRQ Comple-

tion

VM acknowledging and completing a virtual interrupt.

Measures a frequent operation that happens for every

injected virtual interrupt.

VM Switch Switch from one VM to another on the same physical

core. Measures a central cost when oversubscribing

physical CPUs.

I/O Latency Out Measures latency between a driver in the VM signaling

the virtual I/O device in the hypervisor and the virtual

I/O device receiving the signal. For KVM, this traps to

the host kernel. For Xen, this traps to Xen then raises

a virtual interrupt to Dom0.

I/O Latency In Measures latency between the virtual I/O device in the

hypervisor signaling the VM and the VM receiving the

corresponding virtual interrupt. For KVM, this signals

the VCPU thread and injects a virtual interrupt for the

Virtio device. For Xen, this traps to Xen then raises a

virtual interrupt to DomU.

Table 1: Microbenchmarks

Table 1. Table 2 presents the results from running these microbench-

marks on both ARM and x86 server hardware. Measurements are

shown in cycles instead of time to provide a useful comparison

across server hardware with different CPU frequencies, but we focus

our analysis on the ARM measurements.

The Hypercall microbenchmark shows that transitioning from a

VM to the hypervisor on ARM can be significantly faster than x86,

as shown by the Xen ARM measurement, which takes less than a

third of the cycles that Xen or KVM on x86 take. As explained in

Section 2, the ARM architecture provides a separate CPU mode

with its own register bank to run an isolated Type 1 hypervisor such

as Xen. Transitioning from a VM to a Type 1 hypervisor requires

little more than context switching the general purpose registers as

running the two separate execution contexts, VM and the hypervisor,

is supported by the separate ARM hardware state for EL2. While

ARM implements additional register state to support the different

execution context of the hypervisor, x86 transitions from a VM to the

hypervisor by switching from non-root to root mode which requires

context switching the entire CPU register state to the VMCS in

memory, which is much more expensive even with hardware support.

However, the Hypercall microbenchmark also shows that tran-

sitioning from a VM to the hypervisor is more than an order of

magnitude more expensive for Type 2 hypervisors such as KVM

than for Type 1 hypervisors such as Xen on ARMv8.0. This is be-

cause although all VM traps are handled in EL2, a Type 2 hypervisor

is integrated with a host kernel and both run in EL1. This results

in four additional sources of overhead. First, transitioning from the

VM to the hypervisor involves not only trapping to EL2, but also

returning to the host OS in EL1, as shown in Figure 3, incurring

a double trap cost. Second, because the host OS and the VM both

run in EL1, software running in EL2 must context switch all the

ARMv8.0 x86

Microbenchmark KVM Xen KVM Xen

Hypercall 6,500 376 1,300 1,228

Interrupt Controller Trap 7,370 1,356 2,384 1,734

Virtual IPI 11,557 5,978 5,230 5,562

Virtual IRQ Completion 71 71 1,556 1,464

VM Switch 10,387 8,799 4,812 10,534

I/O Latency Out 6,024 16,491 560 11,262

I/O Latency In 13,872 15,650 18,923 10,050

Table 2: Microbenchmark Measurements (cycle counts)

EL1 system register state between the VM guest OS and the Type 2

hypervisor host OS, incurring added cost of saving and restoring EL1

register state. Third, because the host OS runs in EL1 and needs full

access to the hardware, the hypervisor must disable traps to EL2 and

Stage-2 translation from EL2 while switching from the VM to the

hypervisor, and enable them when switching back to the VM again.

Fourth, because the Type 2 hypervisor runs in EL1 but needs to

access VM control register state such as the VGIC state, which can

only be accessed from EL2, there is additional overhead to read and

write the VM control register state in EL2. There are two approaches.

(1) The hypervisor can jump back and forth between EL1 and EL2 to

access the control register state when needed. (2) The hypervisor can

copy the full register state to memory while it is still in EL2, return

to the host OS in EL1 and read and write the memory copy of the

VM control state, and then finally copy the state from memory back

to the EL2 control registers when the hypervisor is running in EL2

again. On non-VHE systems, both methods incur much overhead,

but the former makes the software implementation complicated and

difficult to maintain, and KVM ARM therefore takes the latter ap-

proach of reading and writing all VM control registers in EL2 during

each transition between the VM and the hypervisor on non-VHE

systems.

While the cost of the trap between CPU modes itself is not very

high as shown in previous work [22], our measurements show that

there is a substantial cost associated with saving and restoring regis-

ter state to switch between EL2 and the host in EL1. Table 3 provides

a breakdown of the cost of context switching the relevant register

state when performing the Hypercall microbenchmark measurement

on KVM ARM. Context switching consists of saving register state

to memory and restoring the new context’s state from memory to

registers. The cost of saving and restoring this state accounts for

almost all of the Hypercall time, indicating that context switching

state is the primary cost due to KVM ARM’s design, not the cost

of extra traps. Unlike Xen ARM which only incurs the relatively

small cost of saving and restoring the general-purpose (GP) registers,

KVM ARM saves and restores much more register state at much

higher cost. Note that for ARM, the overall cost of saving register

state, when transitioning from a VM to the hypervisor, is much more

expensive than restoring it, when returning back to the VM from the

hypervisor, due to the cost of reading the VGIC register state.

Unlike on ARM, both x86 hypervisors spend a similar amount

of time transitioning from the VM to the hypervisor. Since both

KVM and Xen leverage the same x86 hardware mechanism for

transitioning between the VM and the hypervisor, they have similar

performance. Both x86 hypervisors run in root mode and run their

VMs in non-root mode, and switching between the two modes in-

volves switching a substantial portion of the CPU register state to





Register State Save Restore

GP Regs 152 184

FP Regs 282 310

EL1 System Regs 230 511

VGIC Regs 3,250 181

Timer Regs 104 106

EL2 Config Regs 92 107

EL2 Virtual Memory Regs 92 107

Table 3: KVM ARM Hypercall Analysis (cycle counts)

the VMCS in memory. Switching this state to memory is fast on x86,

because it is performed by hardware in the context of a trap or as a

result of executing a single instruction. In contrast, ARM provides a

separate CPU mode for the hypervisor with separate registers, and

ARM only needs to switch state to memory when running a different

execution context in EL1. ARM can be much faster, as in the case

of Xen ARM which does its hypervisor work in EL2 and does not

need to context switch much register state, or it can be much slower,

as in the case of KVM on ARMv8.0 which context switches more

register state without the benefit of hardware support similar to x86.

The large difference in the cost of transitioning between the VM

and hypervisor between Type 1 and Type 2 hypervisors results in

Xen ARM being significantly faster at handling interrupt related

traps, because Xen ARM emulates the ARM GIC interrupt controller

directly in the hypervisor running in EL2 as shown in Figure 2. In

contrast, KVM ARM emulates the GIC in the part of the hypervisor

running in EL1. Therefore, operations such as accessing registers

in the emulated GIC, sending virtual IPIs, and receiving virtual

interrupts are much faster on Xen than KVM on ARMv8.0. This is

shown in Table 2 in the measurements for the Interrupt Controller

trap and Virtual IPI microbenchmarks, in which Xen ARM is faster

than KVM ARM by roughly the same difference as for the Hypercall

microbenchmark.

However, Table 2 shows that for the remaining microbenchmarks,

Xen ARM does not enjoy a large performance advantage over KVM

ARM and in fact does worse for some of the microbenchmarks. The

reasons for this differ from one microbenchmark to another: For the

Virtual IRQ Completion microbenchmark, both KVM ARM and

Xen ARM are very fast because the ARM hardware includes support

for completing interrupts directly in the VM without trapping to the

hypervisor. The microbenchmark runs much faster on ARM than

x86 because the latter has to trap to the hypervisor. More recently,

vAPIC support has been added to x86 with similar functionality to

avoid the need to trap to the hypervisor so that newer x86 hardware

with vAPIC support should perform more comparably to ARM [30].

For the VM Switch microbenchmark, Xen ARM is only slightly

faster than KVM ARM because both hypervisor implementations

have to context switch the state between the VM being switched out

and the one being switched in. Unlike the Hypercall microbenchmark

where only KVM ARM needed to context switch EL1 state and per

VM EL2 state, in this case both KVM and Xen ARM need to do

this, and Xen ARM therefore does not directly benefit from its faster

VM-to-hypervisor transition. Xen ARM is still slightly faster than

KVM, however, because to switch between VMs, Xen ARM simply

traps to EL2 and performs a single context switch of the EL1 state,

while KVM ARM must switch the EL1 state from the VM to the host

OS and then again from the host OS to the new VM. Finally, KVM

ARM also has to disable and enable traps and Stage-2 translation on

each transition, which Xen ARM does not have to do.

For the I/O Latency microbenchmarks, a surprising result is that

Xen ARM is slower than KVM ARM in both directions. These mi-

crobenchmarks measure the time from when a network I/O event

is initiated by a sender until the receiver is notified, not including

additional time spent transferring data. I/O latency is an especially

important metric for real-time sensitive operations and many net-

working applications. The key insight to understanding the results

is to see that Xen ARM does not benefit from its faster VM-to-

hypervisor transition mechanism in this case because Xen ARM

must switch between two separate VMs, Dom0 and a DomU, to pro-

cess network I/O. Type 1 hypervisors only implement a limited set

of functionality in the hypervisor directly, namely scheduling, mem-

ory management, the interrupt controller, and timers for Xen ARM.

All other functionality, for example network and storage drivers are

implemented in the special privileged VM, Dom0. Therefore, a VM

performing I/O has to communicate with Dom0 and not just the Xen

hypervisor, which means not just trapping to EL2, but also going to

EL1 to run Dom0.

I/O Latency Out is much worse on Xen ARM than KVM ARM.

When KVM ARM sends a network packet, it traps to the hypervisor,

context switching the EL1 state, and then the host OS instance

directly sends the data on the physical network. Xen ARM, on the

other hand, traps from the VM to the hypervisor, which then signals

a different VM, Dom0, and Dom0 then sends the data on the physical

network. This signaling between VMs on Xen is slow for two main

reasons. First, because the VM and Dom0 run on different physical

CPUs, Xen must send a physical IPI from the CPU running the VM

to the CPU running Dom0. Second, Xen actually switches from

Dom0 to a special VM, called the idle domain, when Dom0 is idling

and waiting for I/O. Thus, when Xen signals Dom0 to perform I/O

on behalf of a VM, it must perform a VM switch from the idle

domain to Dom0. We verified that changing the configuration of

Xen to pinning both the VM and Dom0 to the same physical CPU or

not specifying any pinning resulted in similar or worse results than

reported in Table 2, so the qualitative results are not specific to our

configuration.

It is interesting to note that KVM x86 is much faster than every-

thing else on I/O Latency Out. KVM on both ARM and x86 involve

the same control path of transitioning from the VM to the hypervisor.

While the path is conceptually similar to half of the path for the

Hypercall microbenchmark, the result for the I/O Latency Out mi-

crobenchmark is not 50% of the Hypercall cost on neither platform.

The reason is that for KVM x86, transitioning from the VM to the

hypervisor accounts for only about 40% of the Hypercall cost, while

transitioning from the hypervisor to the VM is the majority of the

cost (a few cycles are spent handling the noop hypercall in the hyper-

visor). On ARM, it is much more expensive to transition from the

VM to the hypervisor than from the hypervisor to the VM, because

reading back the VGIC state is expensive, as shown in Table 3.

I/O Latency In behaves more similarly between Xen and KVM

on ARM because they perform similar low-level operations. Xen

traps from Dom0 running in EL1 to the hypervisor running in EL2

and signals the receiving VM, the reverse of the procedure described

above, thereby sending a physical IPI and switching from the idle

domain to the receiving VM in EL1. For KVM ARM, the Linux





Kernbench Compilation of the Linux 3.17.0 kernel using the allnoconfig for

ARM using GCC 4.8.2.

Hackbench hackbench [1] using Unix domain sockets and 100 process

groups running with 500 loops.

SPECjvm2008 SPECjvm2008 [2] 2008 benchmark running several real life

applications and benchmarks specifically chosen to benchmark the

performance of the Java Runtime Environment. We used 15.02

release of the Linaro AArch64 port of OpenJDK to run the the

benchmark.

Netperf netperf v2.6.0 starting netserver on the server and running

with its default parameters on the client in three modes: TCP_-

RR, TCP_STREAM, and TCP_MAERTS, measuring latency and

throughput, respectively.

Apache Apache v2.4.7 Web server running ApacheBench v2.3 on the

remote client, which measures number of handled requests per

second serving the 41 KB index file of the GCC 4.4 manual using

100 concurrent requests.

Memcached memcached v1.4.14 using the memtier benchmark v1.2.3 with

its default parameters.

MySQL MySQL v14.14 (distrib 5.5.41) running SysBench v.0.4.12 using

the default configuration with 200 parallel transactions.

Table 4: Application Benchmarks

host OS receives the network packet via VHOST on a separate CPU,

wakes up the receiving VM’s VCPU thread to run on another CPU,

thereby sending a physical IPI. The VCPU thread traps to EL2,

switches the EL1 state from the host to the VM, then switches to

the VM in EL1. The end result is that the cost is similar across both

hypervisors, with KVM being slightly faster. While KVM ARM is

slower on I/O Latency In than I/O Latency Out because it performs

more work on the incoming path, Xen has similar performance on

both Latency I/O In and Latency I/O Out because it performs similar

low-level operations for both microbenchmarks.

5 APPLICATION BENCHMARK RESULTS

We next ran a number of real application benchmark workloads

to quantify how well the ARM virtualization extensions support

different hypervisor software designs in the context of more realistic

workloads. Table 4 lists the application workloads we used, which

include a mix of widely-used CPU and I/O intensive benchmark

workloads. For workloads involving a client and a server, we ran the

client on a dedicated machine and the server on the configuration

being measured, ensuring that the client was never saturated during

any of our experiments. We ran these workloads natively and on

both KVM and Xen on both ARM and x86, the latter to provide a

baseline comparison.

Given the differences in hardware platforms, our focus was not

on measuring absolute performance [18], but rather the relative

performance differences between virtualized and native execution

on each platform. Figure 4 shows the performance overhead of KVM

and Xen on ARMv8.0 and x86 compared to native execution on the

respective platform. All numbers are normalized to 1 for native

performance, so that lower numbers represent better performance.

Unfortunately, the Apache benchmark could not run on Xen x86

because it caused a kernel panic in Dom0. We tried several versions

of Xen and Linux, but faced the same problem. We reported this

to the Xen developer community, and learned that this may be a

Mellanox network driver bug exposed by Xen’s I/O model. We also

reported the issue to the Mellanox driver maintainers, but did not

arrive at a solution.

Figure 4 shows that the application performance on KVM and

Xen on ARM and x86 is not well correlated with their respective

microbenchmark performance shown in Table 2. Xen ARM has

by far the lowest VM-to-hypervisor transition costs and the best

performance for most of the microbenchmarks, yet its performance

lags behind KVM ARM on many of the application benchmarks.

KVM ARM substantially outperforms Xen ARM on the various

Netperf benchmarks, TCP_STREAM, TCP_MAERTS, and TCP_-

RR, as well as Apache and Memcached, and performs only slightly

worse on the rest of the application benchmarks. Xen ARM also

does generally worse than KVM x86. Clearly, the differences in

microbenchmark performance do not result in the same differences

in real application performance.

Xen ARM achieves its biggest performance gain versus KVM

ARM on Hackbench. Hackbench involves running lots of threads that

are sleeping and waking up, requiring frequent IPIs for reschedul-

ing. Xen ARM performs virtual IPIs much faster than KVM ARM,

roughly a factor of two. Despite this microbenchmark performance

advantage on a workload that performs frequent virtual IPIs, the re-

sulting difference in Hackbench performance overhead is small, only

5% of native performance. Overall, across CPU-intensive workloads

such as Kernbench, Hackbench and SPECjvm2008, the performance

differences among the different hypervisors across different archi-

tectures is small.

Figure 4 shows that the largest differences in performance are for

the I/O-intensive workloads. We first take a closer look at the Netperf

results. Netperf TCP_RR is an I/O latency benchmark, which sends

a 1 byte packet from a client to the Netperf server running in the

VM, and the Netperf server sends the packet back to the client,

and the process is repeated for 10 seconds. For the Netperf TCP_-

RR benchmark, both hypervisors show high overhead compared

to native performance, but Xen is noticeably worse than KVM. To

understand why, we analyzed the behavior of TCP_RR in further

detail by using tcpdump [6] to capture timestamps on incoming

and outgoing packets at the data link layer. We modified Linux’s

timestamping function to use the ARM architected counter, and took

further steps to ensure that the counter values were synchronized

across all PCPUs, VMs, and the hypervisor. This allowed us to

analyze the latency between operations happening in the VM and

the host. Table 5 shows the detailed measurements.

Table 5 shows that the time per transaction increases significantly

from 41.8 µs when running natively to 86.3 µs and 97.5 µs for KVM

and Xen, respectively. The resulting overhead per transaction is 44.5

µs and 55.7 µs for KVM and Xen, respectively. To understand the

source of this overhead, we decompose the time per transaction into

separate steps. send to recv is the time between sending a packet

from the physical server machine until a new response is received

by the client, which is the time spent on the physical wire plus

the client processing time. recv to send is the time spent at the

physical server machine to receive a packet and send back a response,

including potentially passing through the hypervisor and the VM in

the virtualized configurations.

send to recv remains the same for KVM and native, because

KVM does not interfere with normal Linux operations for sending or

receiving network data. However, send to recv is slower on Xen, be-

cause the Xen hypervisor adds latency in handling incoming network

packets. When a physical network packet arrives, the hardware raises







invalidate requests across multiple PCPUs, remains to be investi-

gated.

For the Netperf TCP_MAERTS benchmark, Xen also has sub-

stantially higher overhead than KVM. The benchmark measures

the network transmit path from the VM, the converse of the TCP_-

STREAM benchmark which measured the network receive path to

the VM. It turns out that the Xen performance problem is due to a

regression in Linux introduced in Linux v4.0-rc1 in an attempt to

fight bufferbloat, and has not yet been fixed beyond manually tuning

the Linux TCP configuration in the guest OS [33]. We confirmed that

using an earlier version of Linux or tuning the TCP configuration in

the guest using sysfs significantly reduced the overhead of Xen on

the TCP_MAERTS benchmark.

Other than the Netperf workloads, the application workloads with

the highest overhead were Apache and Memcached. We found that

the performance bottleneck for KVM and Xen on ARM was due to

network interrupt processing and delivery of virtual interrupts. De-

livery of virtual interrupts is more expensive than handling physical

IRQs on bare-metal, because it requires switching from the VM to

the hypervisor, injecting a virtual interrupt to the VM, then switching

back to the VM. Additionally, Xen and KVM both handle all virtual

interrupts using a single VCPU, which, combined with the additional

virtual interrupt delivery cost, fully utilizes the underlying PCPU.

We verified this by distributing virtual interrupts across multiple

VCPUs, which causes performance overhead to drop on KVM from

35% to 14% on Apache and from 26% to 8% on Memcached, and

on Xen from 84% to 16% on Apache and from 32% to 9% on Mem-

cached. Furthermore, we ran the workload natively with all physical

interrupts assigned to a single physical CPU, and observed the same

native performance, experimentally verifying that delivering virtual

interrupts is more expensive than handling physical interrupts.

In summary, while the VM-to-hypervisor transition cost for a

Type 1 hypervisor like Xen is much lower on ARM than for a Type

2 hypervisor like KVM, this difference is not easily observed for

the application workloads. The reason is that Type 1 hypervisors

typically only support CPU, memory, and interrupt virtualization

directly in the hypervisors. CPU and memory virtualization has been

highly optimized directly in hardware and, ignoring one-time page

fault costs at start up, is performed largely without the hypervisor’s

involvement. That leaves only interrupt virtualization, which is in-

deed much faster for Type 1 hypervisor on ARMv8.0, confirmed

by the Interrupt Controller Trap and Virtual IPI microbenchmarks

shown in Section 4. While this contributes to Xen’s slightly bet-

ter Hackbench performance, the resulting application performance

benefit overall is modest.

However, when VMs perform I/O operations such as sending or

receiving network data, Type 1 hypervisors like Xen typically offload

such handling to separate VMs to avoid having to re-implement all

device drivers for the supported hardware and to avoid running a

full driver and emulation stack directly in the Type 1 hypervisor,

which would significantly increase the Trusted Computing Base and

increase the attack surface of the hypervisor. The cost of switching

to a different VM to perform I/O on behalf of the application VM

is very similar to a Type 2 hypervisor’s approach of switching from

the application VM to the host on ARMv8.0. Additionally, KVM

benefits from the hypervisor having privileged access to all physical

resources, including the VM’s memory, and from being directly

integrated with the host OS, allowing for optimized physical interrupt

handling, scheduling, and processing paths in some situations.

Despite the inability of both KVM and Xen to leverage the poten-

tial fast path of trapping from a VM running in EL1 to the hypervisor

in EL2 without the need to run additional hypervisor functionality in

EL1, our measurements show that both KVM and Xen on ARM can

provide virtualization overhead similar to, and in some cases better

than, their respective x86 counterparts.

6 ARCHITECTURE IMPROVEMENTS

The results presented in previous sections show that there are sig-

nificant performance advantages to Type 2 hypervisors over Type 1

hypervisors for some workloads. However, the performance of Type

2 hypervisors is still hindered by the inability to quickly transition

between the VM and the hypervisor. To address this shortcoming, a

set of improvements have been made to the ARM architecture bring

the fast VM-to-hypervisor transition costs possible in limited circum-

stances with Type 1 hypervisors, to a broader range of application

workloads when using Type 2 hypervisors. These improvements are

the Virtualization Host Extensions (VHE), which were introduced in

version 8.1 of the 64-bit ARM architecture [9, 12]. We first explain

how VHE allows running an OS designed to run in EL1 to run in

EL2 without substantial modifications to the OS source code, and

subsequently discuss changes to the hypervisor to take full advantage

of VHE. VHE provides three key features:

First, VHE introduces additional EL2 registers to provide the

same functionality available in EL1 to software running in EL2.

VHE adds new virtual memory configuration registers, a new context

ID register used for debugging, and a number of new registers to

support a new timer. With these new registers in place, there is a

corresponding EL2 system register for each EL1 system register.

VHE then transparently changes the operation of instructions that

normally access EL1 system registers to access EL2 registers instead

when they run in EL2. By transparently changing the operation

of the instructions, existing unmodified OSes written to issue EL1

system register instructions will instead access EL2 system registers

when run in EL2. VHE also changes the bit layout of some EL2

system registers to share the same layout and semantics as their EL1

counterparts.

Second, VHE supports running host user space applications that

use virtual memory in EL0 and interact directly with a kernel run-

ning in EL2. VHE introduces new functionality so that the EL0

virtual memory configuration can be managed by either EL1 or EL2,

depending on a run time configuration setting, which allows EL2

to route exceptions from EL0 directly to EL2 and at the same time

support virtual memory in EL0. VHE extends the functionality of the

TGE bit such that when enabled and exceptions from EL0 are routed

to EL2, virtual memory support is enabled in EL0 and controlled

using EL2 page table registers. A Type 2 hypervisor will typically

configure EL0 to use the EL2 system registers when running the

hypervisor, and configure EL0 to use the EL1 system registers when

running the VM.

Third, VHE changes the page table format of EL2 to use the same

format as used in EL1, which avoids the need to change an existing

OS kernel’s page table management code to support different formats.

VHE also adds support to EL2 for an additional separate virtual







Full-system virtualization of the ARM architecture is a relatively

unexplored research area. Early approaches were software only,

could not run unmodified guest OSes, and often suffered from poor

performance [11, 20, 23, 28]. More recent approaches leverage ARM

hardware virtualization support. The earliest study of ARM hardware

virtualization support was based on a software simulator and a simple

hypervisor without SMP support, but due to the lack of hardware

or a cycle-accurate simulator, no real performance evaluation was

possible [38].

KVM ARM was the first hypervisor to use ARM hardware vir-

tualization support to run unmodified guest OSes on multi-core

hardware [16, 21, 22]. We expand on our previous work by (1) mea-

suring virtualization performance on ARM server hardware for the

first time, (2) providing the first performance comparison between

KVM and Xen on both ARM and x86, (3) quantifying the true

cost of split-mode virtualization due to the need to save and restore

more state to memory when transitioning from a VM to the hypervi-

sor compared to Type 1 hypervisors on ARM, and (4) identifying

the root causes of overhead for KVM and Xen on ARM for real

application workloads including those involving network I/O.

We explored changes to Linux to support running Linux in EL2

and used this to optimize the implementation of KVM ARM for

VHE before VHE hardware was available [19]. This work shows that

by taking advantage of running a Type 2 hypervisor along with its

host OS kernel in a separate CPU mode from the VM, it is possible

to reduce virtualization overhead by an order of magnitude for some

workloads.

Lim et al. [32] investigates the support for running a hypervisor in

the VM, known as nested virtualization, on ARM systems. ARMv8.3

introduces support for nested virtualization, but running multiple

level of hypervisors results in very high virtualization overhead.

Lim et al. propose changes to the ARM architecture to improve the

performance of nested virtualization, and these changes have been

incorporated in version 8.4 of the ARM architecture.

8 CONCLUSIONS

We present the first study of ARM virtualization performance on

server hardware, including multi-core measurements of the two

main ARM hypervisors, KVM and Xen. We introduce a suite of

microbenchmarks to measure common hypervisor operations on

multi-core systems. Using this suite, we show that ARM enables

Type 1 hypervisors such as Xen to transition between a VM and the

hypervisor much faster than on x86, but that this low transition cost

does not extend to Type 2 hypervisors such as KVM on ARMv8.0

because they cannot run entirely in the EL2 CPU mode designed

for running hypervisors. While this fast transition cost is useful

for supporting virtual interrupts, it does not help with I/O perfor-

mance because a Type 1 hypervisor like Xen has to communicate

with I/O backends in a special Dom0 VM, requiring more complex

interactions than simply transitioning to and from the EL2 CPU

mode.

We show that current hypervisor designs cannot leverage ARM’s

potentially fast VM-to-hypervisor transition cost in practice for real

application workloads. KVM ARM actually exceeds the perfor-

mance of Xen ARM for most real application workloads involving

I/O. This is due to differences in hypervisor software design and

implementation that play a larger role than how the hardware sup-

ports low-level hypervisor operations. For example, KVM ARM

provides more efficient I/O between the VM and the hypervisor,

because the host OS has full access to all of the VM’s memory,

where Xen enforces a strict I/O isolation policy resulting in poor

performance despite Xen’s much faster VM-to-hypervisor transition

mechanism. We show that ARM hypervisors have similar overhead

to their x86 counterparts on real applications. Finally, we show how

improvements to the ARM architecture along with a redesign of

KVM ARM to take advantage of these improvements allow Type 2

hypervisors to bring ARM’s fast VM-to-hypervisor transition cost

to real application workloads involving I/O.

ACKNOWLEDGMENTS

Marc Zyngier provided insights and implemented large parts of

KVM ARM. Eric Auger helped add VHOST support to KVM ARM.

Peter Maydell helped on QEMU internals and configuration. Ian

Campbell and Stefano Stabellini helped on Xen internals and in de-

veloping our measurement frameworks for Xen ARM. Leigh Stoller,

Mike Hibler, and Robert Ricci provided timely support for CloudLab.

Martha Kim and Simha Sethumadhavan gave feedback on earlier

drafts of this paper. This work was supported in part by Huawei Tech-

nologies, a Google Research Award, and NSF grants CNS-1162447,

CNS-1422909, and CCF-1162021.

REFERENCES
[1] 2008. Hackbench. http://people.redhat.com/mingo/cfs-scheduler/tools/hackbench.

c.

[2] 2008. SPECjvm2008. https://www.spec.org/jvm2008.

[3] 2014. Xen ARM with Virtualization Extensions. http://wiki.xen.org/wiki/Xen_

ARM_with_Virtualization_Extensions Accessed: April 2016.

[4] 2015. Tuning Xen for Performance. http://wiki.xen.org/wiki/Tuning_Xen_for_

Performance. Accessed: Jul. 2015.

[5] 2016. CloudLab. http://www.cloudlab.us Accessed: April 2016.

[6] 2016. Tcpdump. http://www.tcpdump.org/tcpdump_man.html. Accessed: April

2016.

[7] Keith Adams and Ole Agesen. 2006. A Comparison of Software and Hardware

Techniques for x86 Virtualization. In Proceedings of the 12th International Con-

ference on Architectural Support for Programming Languages and Operating

Systems. 2–13.

[8] Ole Agesen, Jim Mattson, Radu Rugina, and Jeffrey Sheldon. 2012. Software

Techniques for Avoiding Hardware Virtualization Exits. In Proceedings of the

2012 USENIX Annual Technical Conference. 373–385.

[9] ARM Ltd. 2017. ARM Architecture Reference Manual ARMv8-A DDI 0487C.a

(ID121917).

[10] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho,

Rolf Neugebauer, Ian Pratt, and Andrew Warfield. 2003. Xen and the Art of

Virtualization. In Proceedings of the 19th Symposium on Operating Systems

Principles. 164–177.

[11] Ken Barr, Prashanth Bungale, Stephen Deasy, Viktor Gyuris, Perry Hung, Craig

Newell, Harvey Tuch, and Bruno Zoppis. 2010. The VMware Mobile Virtualiza-

tion Platform: Is that a hypervisor in your pocket? SIGOPS Operating Systems

Review 44, 4 (Dec. 2010), 124–135.

[12] David Brash. 2014. The ARMv8-A architecture and its ongoing devel-

opment. http://community.arm.com/groups/processors/blog/2014/12/02/

the-armv8-a-architecture-and-its-ongoing-development.

[13] Jeffrey Buell, Daniel Hecht, Jin Heo, Kalyan Saladi, and H. Reza Taheri. 2013.

Methodology for Performance Analysis of VMware vSphere under Tier-1 Appli-

cations. VMware Technical Journal 2, 1 (June 2013), 19–28.

[14] Edouard Bugnion, Scott Devine, Mendel Rosenblum, Jeremy Sugerman, and

Edward Y. Wang. 2012. Bringing Virtualization to the x86 Architecture with the

Original VMware Workstation. ACM Transactions on Computer Systems 30, 4

(Nov. 2012), 12:1–12:51.

[15] L. Cherkasova and R. Gardner. 2005. Measuring CPU overhead for I/O processing

in the Xen virtual machine monitor.. In Proceedings of the 2005 USENIX Annual

Technical Conference. 387–390.

[16] Christoffer Dall. 2018. The Design, Implementation, and Evaluation of Software

and Architectural Support for ARM Virtualization. Ph.D. Dissertation. Columbia





University.

[17] Christoffer Dall, Shih-Wei Li, Jin Tack Lim, Jason Nieh, and Georgios Kolovent-

zos. 2016. ARM Virtualization: Performance and Architectural Implications.

In 43rd ACM/IEEE Annual International Symposium on Computer Architecture

(ISCA ’16). 304–316.

[18] Christoffer Dall, Shih-Wei Li, Jin Tack Lim, and Jason Nieh. 2015. A Measurement

Study of ARM Virtualization Performance. Technical Report CUCS-021-15.

Department of Computer Science, Columbia University.

[19] Christoffer Dall, Shih-Wei Li, and Jason Nieh. 2017. Optimizing the Design and

Implementation of the Linux ARM Hypervisor. In Proceeding of the USENIX

Annual Technical Conference (USENIX ATC). 221–233.

[20] Christoffer Dall and Jason Nieh. 2010. KVM for ARM. In Proceedings of the

Ottawa Linux Symposium. 45–56.

[21] Christoffer Dall and Jason Nieh. 2013. KVM/ARM: Experiences Building the Linux

ARM Hypervisor. Technical Report CUCS-010-13. Department of Computer

Science, Columbia University.

[22] Christoffer Dall and Jason Nieh. 2014. KVM/ARM: The Design and Implemen-

tation of the Linux ARM Hypervisor. In Proceedings of the 19th International

Conference on Architectural Support for Programming Languages and Operating

Systems. 333–348.

[23] Jiun-Hung Ding, Chang-Jung Lin, Ping-Hao Chang, Chieh-Hao Tsang, Wei-Chung

Hsu, and Yeh-Ching Chung. 2012. ARMvisor: System Virtualization for ARM.

In Proceedings of the Ottawa Linux Symposium. 93–107.

[24] Kangarlou Gamage and Xu Kompella. 2011. Opportunistic flooding to improve

TCP transmit performance in virtualized clouds.. In Proceedings of the 2nd Sym-

posium on Cloud Computing. 24:1–24:14.

[25] Abel Gordon, Nadav Amit, Nadav Har’El, Muli Ben-Yehuda, Alex Landau, Assaf

Schuster, and Dan Tsafrir. 2012. ELI: Bare-Metal Performance for I/O Virtu-

alization. In Proceedings of the 17th International Conference on Architectural

Support for Programming Languages and Operating Systems. 411–422.

[26] Jin Heo and Reza Taheri. 2013. Virtualizing Latency-Sensitive Applications:

Where Does the Overhead Come From? VMware Technical Journal 2, 2 (Dec.

2013), 21–30.

[27] Hewlett-Packard. 2014. HP Moonshot-45XGc Switch Module. http://www8.hp.

com/us/en/products/moonshot-systems/product-detail.html?oid=7398915.

[28] J.Y Hwang, S.B Suh, S.K Heo, C.J Park, J.M Ryu, S.Y Park, and C.R Kim.

2008. Xen on ARM: System Virtualization using Xen Hypervisor for ARM-based

Secure Mobile Phones. In Proceedings of the 5th Consumer Communications and

Newtork Conference. 257–261.

[29] Ian Campbell. 2015. Personal Communication.

[30] Intel Corporation. 2015. Intel 64 and IA-32 Architectures Software Developer’s

Manual, 325384-056US.

[31] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori. 2007.

kvm: The Linux Virtual Machine Monitor. In Proceedings of the Ottawa Linux

Symposium, Vol. 1. 225–230.

[32] Jin Tack Lim, Christoffer Dall, Shih-Wei Li, Jason Nieh, and Marc Zyngier. 2017.

NEVE: Nested Virtualization Extensions for ARM. In Proceedings of the 26th

Symposium on Operating Systems Principles (SOSP ’17). 201–217.

[33] Linux ARM Kernel Mailing List. 2015. "tcp: refine TSO autosizing" causes perfor-

mance regression on Xen. http://lists.infradead.org/pipermail/linux-arm-kernel/

2015-April/336497.html.

[34] Gerald J. Popek and Robert P. Goldberg. 1974. Formal Requirements for Vir-

tualizable Third Generation Architectures. Commun. ACM 17, 7 (July 1974),

412–421.

[35] Rusty Russell. 2008. virtio: Towards a De-Facto Standard for Virtual I/O Devices.

SIGOPS Operating Systems Review 42, 5 (July 2008), 95–103.

[36] Jose Renato Santos, Yoshio Turner, G. John Janakiraman, and Ian Pratt. 2008.

Bridging the Gap between Software and Hardware Techniques for I/O Virtualiza-

tion. In Proceedings of the 2008 USENIX Annual Technical Conference. 29–42.

[37] Jeremy Sugerman, Ganesh Venkitachalam, and Beng-Hong Lim. 2001. Virtualiz-

ing I/O Devices on VMware Workstation’s Hosted Virtual Machine Monitor. In

Proceedings of the 2001 USENIX Annual Technical Conference. 1–14.

[38] Prashant Varanasi and Gernot Heiser. 2011. Hardware-Supported Virtualization on

ARM. In Proceedings of the 2nd Asia-Pacific Workshop on Systems. 11:1–11:5.






